A Note on Double Central Extensions in Exact Mal’tsev Categories

نویسندگان

  • TOMAS EVERAERT
  • Diana Rodelo
  • Tim Van der Linden
چکیده

The characterisation of double central extensions in terms of commutators due to Janelidze (in the case of groups), Gran and Rossi (in the case of Mal’tsev varieties) and Rodelo and Van der Linden (in the case of semi-abelian categories) is shown to be still valid in the context of exact Mal’tsev categories.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A NOTE ON DOUBLE CENTRAL EXTENSIONS IN EXACT MAL’TSEV CATEGORIES dedicated to Francis Borceux on the occasion of his sixtieth birthday

La caractérisation des extensions centrales doubles en termes de commutateurs de Janelidze (dans le cas des groupes) et de Gran et Rossi (dans le cas des variétés de Mal’tsev) est montrée d’être toujours valide dans le contexte des catégories exactes de Mal’tsev avec coégalisateurs. The characterisation of double central extensions in terms of commutators due to Janelidze (in the case of groups...

متن کامل

A History of Selected Topics in Categorical Algebra I: From Galois Theory to Abstract Commutators and Internal Groupoids

This paper is a chronological survey, with no proofs, of a direction in categorical algebra, which is based on categorical Galois theory and involves generalized central extensions, commutators, and internal groupoids in Barr exact Mal’tsev and more general categories. Galois theory proposes a notion of central extension, and motivates the study of internal groupoids, which is then used as an a...

متن کامل

Higher Central Extensions in Mal'tsev Categories

Higher dimensional central extensions of groups were introduced by G. Janelidze as particular instances of the abstract notion of covering morphism from categorical Galois theory. More recently, the notion has been extended to and studied in arbitrary semi-abelian categories. Here, we further extend the scope to exact Mal’tsev categories and beyond. For this, we consider conditions on a Galois ...

متن کامل

A Characterization of Central Extensions in the Variety of Quandles

The category of symmetric quandles is a Mal’tsev variety whose subvariety of abelian symmetric quandles is the category of abelian algebras. We give an algebraic description of the quandle extensions that are central for the adjunction between the variety of quandles and its subvariety of abelian symmetric quandles.

متن کامل

Relative Mal’tsev Categories

We define relative regular Mal’tsev categories and give an overview of conditions which are equivalent to the relative Mal’tsev axiom. These include conditions on relations as well as conditions on simplicial objects. We also give various examples and counterexamples.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009